N-Glycosylation Site Occupancy Analysis


N-glycosylation site occupancy is a physiological feature of glycoproteins and mainly contributes N-glycan. The degree of N-glycosylation site occupancy by itself correlates with the severity of the disease. Mass spectrometry (MS) has been widely used to analyze site occupancy in complex or clinical samples. Based on MS, label-free and labeling methods are commonly applied in this field. Labeling methodologies include SILAC (stable isotope labeling by amino acids in cell culture), TMT (tandem mass tags), dimethylation, and iTRAQ (isobaric tags for absolute and relative quantification). Label-free methods have the advantage of experimental simplicity in sample preparation.

N-Glycosylation Site Occupancy Analysis

Figure 1. MS-based labeling and label-free technologies for quantification of N-glycosylation site occupancy (Zhang et al., 2017).

Overview of N-Glycosylation Site Occupation Analysis Service

Characterizing the site-specific N-glycosylation including N-glycosylation site occupancy and site-specific glycan structure is important for understanding glycoprotein biosynthesis and function. Quantification of N-glycosylation site occupancy is also important for disease research and drug development as N-glycosylation site occupancy could be physiological, affected by human disease or modified by heterologous protein overexpression. At Creative Proteomics, we provide both labeling and labeling-free technologies for the quantification of N-glycosylation site occupancy.

The significant advantage of labeling methods is the ability to simultaneously and efficiently analyze differentially labeled samples in a single run. We can provide trypsin catalyzed 18O, SILAC, and iTRAQ labeling approaches for N-glycosylation site occupancy analysis. Isotope-coded glycosylation site-specific tagging (IGOT) can be used for large-scale N-glycosylation site occupancy analysis.

Label-free quantification of N-glycosylation site occupancy is generally based on peptide-ion intensity or peak areas. And its significant advantage is the simple workflow. The general strategy of variable N-glycosylation site occupancy analysis in glycoproteins comprises the following procedures.

N-Glycosylation Site Occupancy Analysis

Figure 2. The workflow for label-free quantification of N-glycan site occupancy rates.

Sample Requirement

We work with a range of sample sources as follows.

Advantages of N-Glycosylation Site Occupancy Analysis

Creative Proteomics provides the N-linked glycans site occupancy analysis to obtain truly glycosylated peptides in the whole mixture of a number of potentially N-glycosylated sites that are may or may not be glycosylated. Please feel free to contact us to discuss your project.

References
1. Su Y L, Wang B, Hu M D, et al. Site-Specific N-Glycan Characterization of Grass Carp Serum IgM. Frontiers in Immunology, 2018, 9.
2. Thannhauser T W, Shen M, Sherwood R, et al. A workflow for large‐scale empirical identification of cell wall N‐linked glycoproteins of tomato (Solanum lycopersicum) fruit by tandem mass spectrometry. Electrophoresis, 2013, 34(16): 2417-2431.
3. Zhang S, Li W, Lu H, et al. Quantification of N-glycosylation site occupancy status based on labeling/label-free strategies with LC-MS/MS. Talanta, 2017, 170: 509-513.


* For Research Use Only. Not for use in diagnostic procedures.
INQUIRY
Our customer service representatives are available 24 hours a day, 7 days a week. Inquiry
Online Inquiry

Please submit a detailed description of your project. We will provide you with a customized project plan to meet your research requests. You can also send emails directly to for inquiries.

Stay in Contact

  • 45-1 Ramsey Road, Shirley, NY 11967, USA
  • Tel: 1-631-275-3058 (USA)
  • Tel: 44-208-144-6005 (Europe)
  • Fax: 1-631-614-7828
  • Email:
© 2008-2020 Creative Proteomics. All rights reserved.