Nucleotide Sugars Analysis Service

Nucleotide sugars are the activated forms of monosaccharides. Nucleotide sugars act as glycosyl donors in glycosylation reactions. Those reactions are catalyzed by a group of enzymes called glycosyltransferases. To act as glycosyl donors, those monosaccharides should exist in a highly energetic form. This occurs as a result of a reaction between nucleoside triphosphate (NTP) and glycosyl monophosphate (phosphate at anomeric carbon). The recent discovery of the reversibility of many glycosyltransferase-catalyzed reactions calls into question the designation of sugar nucleotides as 'activated' donors.

Biological Importance and Energetics of Nucleotide sugarsFigure 1. Biological Importance and Energetics of Nucleotide sugars

Nucleotide sugars are the substrates of glycosyltransferases. In the mean time the nucleotide sugars are also intermediates in nucleotide sugar interconversions that produce some of the activated sugars needed for glycosylation reactions. Since most glycosylation takes place in the endoplasmic reticulum and golgi apparatus, there are a large family of nucleotide sugar transporters that allow nucleotide sugars to move from the cytoplasm, where they are produced, into the organelles where they are consumed.

Nucleotide  Sugars Analysis ServiceFigure 2. Schematic representation of nucleotide sugar transporters (NSTs) and glycosylation pathways.

There are nine sugar nucleotides in humans that act as glycosyl donors and they can be classified depending on the type of the nucleoside forming them:

In other forms of life various other sugars are used and many donors are utilized for them. All five of the common nucleosides are used as a base for a nucleotide sugar donor somewhere in nature. For examples, CDP-glucose and TDP-glucose give rise to many other forms of CDP and TDP-sugar donor nucleotides.

Nucleotide sugar metabolism is particularly well studied in yeast, fungal pathogens, and bacterial pathogens, such as E. coli and Mycobacterium tuberculosis, for the reason that these molecules are necessary for the synthesis of glycoconjugates on the surfaces of these organisms. These glycoconjugates are virulence and components of the fungal and bacterial cell wall. These pathways are also studied in plants, but here the enzymes involved are less well understood.

Nucleotide sugars are important in determining cell surface glycoprotein glycosylation, which can modulate cellular properties such as growth and arrest. We Creative Proteomics have developed a conventional HPLC method for simultaneous determination of nucleotide sugars.




Nucleotide Sugars Quantified in This Service

With integrated set of separation, characterization, identification and quantification systems featured with excellent robustness & reproducibility, high and ultra-sensitivity, Creative Proteomics provides reliable, rapid and cost-effective nucleotide sugars targeted metabolomics services.

How to place an order:

Ordering Procedure

*If your organization requires signing of a confidentiality agreement, please contact us by email.

* For Research Use Only. Not for use in diagnostic procedures.
Our customer service representatives are available 24 hours a day, 7 days a week. Inquiry
Online Inquiry

Please submit a detailed description of your project. We will provide you with a customized project plan to meet your research requests. You can also send emails directly to for inquiries.

  • Verification Code

Stay in Contact

  • 45-1 Ramsey Road, Shirley, NY 11967, USA
  • Tel: 1-631-275-3058 (USA)
  • Tel: 44-208-144-6005 (Europe)
  • Fax: 1-631-614-7828
  • Email:
© 2021 Creative Proteomics. All rights reserved.