

Exploring Protein-Protein Interactions

Protein-Protein Interactions (PPIs) refer to the interactions and associations between different proteins within a biological system. These interactions can lead to the formation of protein complexes or the transmission of signals, regulating various cellular processes. PPIs play a pivotal role in biology, orchestrating essential functions within cells. They are involved in the regulation of cell cycles, signal transduction, metabolic processes, and disease mechanisms. Investigating PPIs often requires a combination of experimental techniques, including mass spectrometry, structural biology, cell biology, and bioinformatics.

The study of PPIs has wide-ranging applications in biomedical research, drug discovery, systems biology, and structural biology. It provides critical insights for scientific inquiry and innovation in drug development.

Choose the Protein-Protein Interaction Service That Fits Your Needs

Unlock the Secrets of Protein Interactions with Creative Proteomics! Our cutting-edge techniques and expertise empower your research. Explore the hidden world of PPIs and accelerate your discoveries.

Techniques	Characteristics	Detection Sensitivity	In Vivo vs. In Vitro	Scale of Analysis	Typical Applications
Affinity Purification-Mass Spectrometry (AP-MS)	Identifies protein complexes through affinity purification followed by MS analysis.	High Sensitivity	In Vitro	High-Throughput	Proteome-wide interactome mapping, complex characterization.
Tandem Affinity Purification-Mass Spectrometry (TAP-MS)	Utilizes mass spectrometry for the analysis of proteins purified using TAP.	High Sensitivity	Both	Complex-specific analysis	Analysis of protein complexes in vivo and in vitro.
GST Pull-Down	Uses GST-tagged bait proteins for affinity purification.	Medium Sensitivity	In Vitro	Focused	Validation and characterization of interactions.
Immunoprecipitation	Uses antibodies to isolate specific proteins or complexes.	Medium Sensitivity	Both	Focused	Confirmation of protein interactions.
SILAC- Immunoprecipitation	Combines stable isotope labeling and IP for quantitative analysis.	High Sensitivity	In Vivo	High-Throughput	Quantitative analysis of protein interactions.
Yeast/Bacterial Two- Hybrid	Measures interactions between proteins in yeast or bacteria.	Low Sensitivity	Both	High-Throughput	Large-scale screening of protein interactions.
Mammalian Two-hybrid (M2H)	Detects interactions between fusion proteins in mammalian	Medium Sensitivity	Both	High-Throughput	Functional analysis of protein interactions.

Techniques	Characteristics	Detection Sensitivity	In Vivo vs. In Vitro	Scale of Analysis	Typical Applications
Chemical Crosslinking-Mass Spectrometry (XL-MS)	Utilizes chemical crosslinkers to capture transient interactions.	High Sensitivity	In Vitro	Focused	Structural elucidation of protein complexes.
Proximity-dependent Biotin Identification (BioID)	Labels interacting proteins with biotin for subsequent purification.	High Sensitivity	In Vivo	Focused	Mapping the interactome of specific proteins.
BIoID2	Improved version of BioID with faster kinetics.	High Sensitivity	In Vivo	Focused	Subcellular localization studies.
miniTurbo	Enhanced proximity labeling for studying membrane proteins.	High Sensitivity	In Vivo	Focused	Membrane protein interactome analysis.
TurbolD	Faster and more efficient proximity labeling technique.	High Sensitivity	In Vivo	Focused	Real-time protein interaction studies.
Label Transfer Protein Interaction Analysis	Requires reconstitution of a split reporter protein.	Medium Sensitivity	In Vivo	High-Throughput	High-throughput analysis of protein interactions.

Binding Affinity and Thermodynamics Analysis

Techniques	Characteristics	Detection Sensitivity	In Vivo vs. In Vitro	Scale of Analysis	Typical Applications
Isothermal Titration Calorimetry (ITC)	Measures heat changes during binding for quantitative analysis.	Medium Sensitivity	In Vitro	Focused	Quantitative analysis of binding affinities.
Hydrogen Deuterium Exchange (HDX) Mass Spectrometry	Measures hydrogen-deuterium exchange rates to identify interaction interfaces.	Medium Sensitivity	In Vitro	Focused	Epitope mapping and conformational studies.

Functional Interaction and Activity Analysis

Techniques	Characteristics	Detection Sensitivity	In Vivo vs. In Vitro	Scale of Analysis	Typical Applications
Reverse Mammalian Protein-Protein Interaction Trap (Reverse MAPPIT)	Measures the disruption of protein-protein interactions in mammalian cells.	Medium Sensitivity	In Vivo	High-Throughput	Functional analysis of protein interactions.

Proteolysis-Based Techniques

Techniques	Characteristics	Detection Sensitivity	In Vivo vs. In Vitro	Scale of Analysis	Typical Applications
· ·	Measures changes in protein conformation upon interaction.	High Sensitivity	In Vitro	Focused	Characterization of conformational changes.

Specialized Detection and Characterization

Techniques	Characteristics	l Detection Sensitivity	In Vivo vs. In Vitro	Scale of Analysis	Typical Applications
Far-Western Blot	Detects protein-protein interactions using specific antibodies.	Low Sensitivity	In Vitro	Focused	Validation of known interactions.

Applications

1) Biomedical Research

Discover disease mechanisms, biomarkers, and therapeutic targets.

2) Drug Discovery

Accelerate novel drug development by targeting specific protein interactions.

3) Systems Biology

Construct comprehensive cellular models for holistic insights.

4) Structural Biology

Elucidate complex structures for functional understanding and drug design.

5) Cancer Research

Investigate oncogenic interactions and potential cancer therapies.

6) Neuroscience

Explore nervous system interactions for brain function and neurological disorder insights.

7) Immunology

Study immune responses and signaling through protein interactions.

8) Infectious Diseases

Examine host-pathogen interactions for infectious disease strategies.

9) Metabolic Disorders

Explore metabolic pathway interactions in disorders like diabetes and obesity.

10) Agricultural Biotechnology

Improve crop yield and disease resistance via plant protein interactions.

11) Environmental Science

Understand microbial interactions for environmental issue mitigation.

