Metabolomics and *°C Glucose Flux in YAP-Mediated Croative
Compensatory Hypertrophy under Pressure Overload
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Our role: High-resolution U-'°C glucose stable-isotope tracing and metabolic flux our Contribution (creative Proteomics)
analysis of glycolytic and TCA cycle intermediates in cardiac tissues. ReSUItS ‘ _
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U-"3C glucose stable-isotope tracing with high-resolution LC—QTOF
metabolomics to quantify isotopomer distributions of glycolytic and
TCA-cycle intermediates in cardiomyocytes.
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Background Key Finding 1 —YAP is required for

Pressure overload triggers compensatory cardiac hypertrophy, yet g:,yeiféitcllc activation under pressure i

inadequate adaptation leads to heart failure. Ll s
YAP activation is transient and protective: reduced YAP blunts hypertrophy Acute pressure overload activates glycolysis

but worsens function. In the heart, and this response depends on
endogenous YAP.
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Core readouts delivered

C reserve

* |sotopomer patterns (M+0...M+n) and fractional labeling
* Glucose-derived labeling of key nodes (e.g., PEP, malate)
5 5 & & * QC-checked peak integration and data tables suitable for
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Given YAP’s link to Warburg-like glycolysis, a key question is whether
metabolic reprogramming underlies this compensation.  TAC increases basal glycolysis and glyco-
lytic capacity in control hearts.

Research QUEStiOI‘I « TAC-induced increases in these glycolytic Proposed Model
parameters are significantly attenuated in
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Does YAP drive a Warburg-like aerobic glycolysis program to support YAPch-KO hearts. Under pressure overload, YAP activation enhances GLUT1-depen-
Compensatory cardiac hypertrophy? YAP is required for TAC-induced glycolytic activation (basal dent : . o :
glycolysis and glycolytic capacity increase in controls but are ent aerobic glycolysis and increases glucose-derived carbon flux
blunted in YAPch-KO). Into central-carbon metabolism, supporting compensatory hypertro-

phy and preserving cardiac function.
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Hypothesis Key Finding 2 — YAP rewires central
carbon metabolism and increases

Non-labeled C @

YAP promotes compensatory hypertrophy by activating GLUT1-dependent glucose-derived flux

aerobic glycolysis and rerouting glucose carbon into anabolic and 2000
M+1 O@® OO0 M+3

M+0 @@@ 2PG/3PG

anaplerotic pathways. Metabolomics and U-°C glucose tracing supporta -5
Warburg-like program under YAP activation.
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Conclusion & Significance

Our study reveals that YAP acts as a metabolic "master switch"
during cardiac stress. By orchestrating a GLUT1-mediated glycolyt-
ol 1 2 ic shift, YAP ensures the heart meets the massive biosynthetic and

e T * energy demands required for compensatory hypertrophy, thereby
preventing the transition to heart failure. This identifies the
YAP-GLUT1 axis as a promising therapeutic target for metabolic in-
tervention in cardiomyopathies.
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ObjeCtIVGS  (Central-carbon intermediates shift toward

, , , L downstream glycolysis and anaplerotic/TCA
1. Test whether YAP is required for glycolytic activation under pressure nodes.

overload.

2. Profile YAP-driven metabolite changes and glucose carbon flux using * °C labeling of PEP (M+3) and malate (M+4)
metabolomics and U-"3C glucose tracing. iIncreases, indicating higher glucose-derived

. . . carbon flow.
3. Validate GLUT1-dependent glycolysis as a key mechanism. 3C tracing confirms increased glucose-derived flux under YAP

activation (higher PEP M+3 and malate M+4). Why Choose Creative Proteomics

StUdy DeS|gn Key Finding 3 — GLUT1-dependent glycolysis is essential for YAP-mediated » Audit-ready methods & QC criteria

hypertrophy and cardioprotection - - - - .
In vivo TAC model (control vs YAPch-KO) plus cardiomyocyte models ’fijclaizr Zi(rjaerlr;iteerfa,rllr;tee?r:?gsgozglses, Isotope correction assump
(NRVMs/AMVMs, Ad-YAP vs control), integrating ECAR, GC-MS In cardiomyocytes, GLUT1 inhibition suppresses YAP-driven glycolysis and hypertrophy, while ’ P :

metabolomics, and U-"3C glucose LC—-QTOF tracing with mechanistic cardiac GLUT1 restoration improves outcomes in YAP-deficient hearts after TAC.

perturbations (siRNA, BAY-876, AAV-GLUT1 rescue). : s * o s Peak identity verification and interference screening to reduce
R R mis-assignment risk.
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* |sotopomer integrity checks (M+0...M+n)

55 kDa
GLUT GLUT

a-tubulin | —— — e — . —|_55 kDa

In vivo (mouse) In vitro (cardiomyocytes)

AAV-Control

« Central-carbon practical controls
Workflow safeguards for labile glycolytic/TCA intermediates, carry-
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R * Reviewer-friendly reporting

Results packaged to connect metabolite pools with flux evidence
without over-interpretation.
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Ki-67 labeling non-myocyte index (%)

TAC (pressure overload) NRVMs / AMVMs

vs (YAPch-KO) Ad-YAP vs Ad-Control
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readouts
ECAR » GC-MS « "3C flux -
Heart tissue — U-'“C glucose tracing
;% (LC-QTOF)

Working on cardiac, metabolic, or stress-response models?
Let’s build a metabolomics + "°C glucose tracing plan that
answers your mechanism questions.
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metabolomics (GC-MS)
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Mechanistic | siRna % ] GLUT1 inhibition Xt In vivo rescue: o o o o e e e e Web: www.creative-proteomics.com
perturbations = | knockdown &) | (BAY-876) 28] | AAV-GLUT1 Cardiac GLUTT1 restoration improves outcomes in YAP-deficient hearts after TAC, supporting L _ _
Email: info@creative-proteomics.com Contact Us

GLUT1-dependent cardioprotection.



https://www.creative-proteomics.com/contact-us.htm
https://www.creative-proteomics.com/services/metabolic-flux-analysis-mfa-2.htm

