PROTEOMICS

TOP-DOWN | **MIDDLE-DOWN** | **BOTTOM-UP**

Sample Preparation

Enzymatic Digestion

Protein Fractionation

MS Analysis

Data Evaluation

TOP-DOWN

Digest the protein into small peptides
Well-developed methods available for protein quantification
Higher throughput

MIDDLE-DOWN

This procedure works with large peptides, produced by limited proteolytic digestion.
Several simultaneous post-translational modifications on longer peptide
Beeper can be analyzed and identified. Compared with MS method, it can analyze a wider range of peptide segments.
Matrix-assisted post-translational modification identification.

BOTTOM-UP

Digest the protein into small peptides
Well-developed methods available for protein quantification
Higher throughput

Strategy Comparison

TOP-DOWN

Does not require the laborious chemical or enzymatic digestion
100% sequence coverage
Full-length characterization of proteomes
The complete protein was analyzed by mass spectrometry, and the excellent PTM characterization was achieved.
Lower throughput

MIDDLE-DOWN

Restricted proteolysis
This procedure works with large peptides, produced by limited proteolytic digestion.
Several simultaneous post-translational modifications on longer peptide
Beeper can be analyzed and identified. Compared with MS method, it can analyze a wider range of peptide segments.
Matrix-assisted post-translational modification identification.

BOTTOM-UP

Enzymatic digestion (e.g. trypsin)
Well-developed methods available for protein quantification
Higher throughput

Application

Title: Top-Down Proteomics Using Acrylate Zone Electrophoresis Tandem Mass Spectrometry: Identification of Tumor Proteins from the SKBR-3 Breast Carcinoma Line

Method: Combining a HP trap column with subsequent weak cation-exchanger hydrophilic interaction columns interfaced directly to high mass accuracy Q-Exactive XACT, the proteome was successfully deconvoluted, which enabled the identification of proteins from the skin and breast-related tumor. A total of 107 different combined fraction sets were identified in parallel in the same time.

Highlight: The platform generated high peak capacity (~9000) for separation of intact proteins, leading to the identification of 86 proteoforms from the SKBR-3 breast carcinoma. The data representation is 10-fold improvement in the numbers of protein identifications compared with previous LC-MS/MS studies.

Title: Middle-down hybrid chromatography/tandem mass spectrometry followed by separation of monofunctional post-translational modifications in keratins

Method: Combining a 1.5% organic/water gradient with a 13% organic/water gradient, the proteins were separated into different fractions based on the type and degree of post-translational modifications.

Highlight: The method allows for the separation of proteins with different post-translational modifications, enabling the identification of specific modifications in keratin proteins.

Workflow

Sample Preparation

Protein Fractionation

Enzymatic Digestion

MS Analysis

Data Evaluation

BOTTOM-UP

MIDDLE-DOWN

TOP-DOWN
